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Detailed analysis of the fibre pull-out test
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A detailed finite element analysis has been carried out to simulate the fibre pull-out test. The
fibre-matrix interface was assumed to obey a Coulomb friction law. Special attention was
focused on the effect of residual thermal stresses. An approximate analytical solution, rather
similar to those in the literature, was derived. The results of the finite element analysis have
been used to investigate the limitation and the validity of this analytical solution. The
accuracy of various approximate analyses has also been discussed.

1. Introduction

The control of adhesion between the fibre-matrix in-
terface in fibre-reinforced composites is of paramount
importance in determining the usefulness of these ma-
terials. If the interface cracks too easily, the elastic and
compressive strength properties of the composite are
compromised. On the other hand, if the interface is too
strong, cracks may run easily through the composite
without being deflected along the fibre interfaces, thus
compromising the fracture toughness of the com-
posite.

A practical measure of the ability of the
fibre-matrix interface to transfer load is the interface
shear strength, 1. The tests most often used to deter-
mine 1T are the single-filament fragmentation test
[1-3], the fibre push-out test [4-7] and the fibre
pull-out test [8-12]. In the fibre pull-out test, a single
fibre is pulled out of a block of matrix material in
which it is partially embedded. The fibre load and the
relative displacement (the slip) at the fibre-matrix
interface are measured. The test is often interpreted by
assuming that the shear resistance at the fibre-matrix
interface is characterized by a constant frictional shear
stress, T.

The mechanics of the fibre pull-out test have been
considered by many investigators in various degrees of
sophistication. Starting with the simple shear-lag ana-
lysis of Cox [13], more elaborate approximate ana-
lyses have been proposed to solve a wide variety of
load-transfer problems involving bimaterial interfaces
of which the fibre pull-out test is a special case
[14-16]. These approximate methods have been used
extensively to obtain analytical solutions for the fibre
pull-out test [17-30]. For example, Takaku and
Arridge [19] introduced a modified shear-lag analysis
that accounts approximately for the variation in the
interface normal stress which accompanies Possion
contraction of the pulled fibre. The effect of residual
stresses on the pull-out test was investigated by
Kerans and Parthasarathy [297; they use a modified
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shear-lag analysis which accounts for both the axjal
and radial residual stresses. Steif and Hoysan [24]
have obtained a highly accurate, detailed numerical
solution of a two-dimensional analogue of the pull-out
problem. The residual stresses in their calculation,
however, are simulated by a far-field compressive
stress, so that the effect of axial residual stress is absent
in their analysis. Although there are many analytical
solutions for the pull-out tests [17-30], there have
been very few attempts to verify the accuracy of these
analytical solutions which are based mostly on modi-
fied shear-lag models. Amongst the few numerical
simulations of the pull-out test, for example [24], the
thermal residual stresses are not explicitly included in
the numerical computations.

The purpose of the present study was to assess the
accuracy of the approximate shear-lag analysis by
comparing the analytical results with detailed finite
clement simulation of the pull-out test. Specifically,
the accuracy of the analytical solution depends on the
elastic properties of the fibre and the matrix, the fric-
tion coefficient and the geometry of the specimen. Qur
goal was to illucidate the regime of validity of the
shear-lag model using an accurate numerical method.
The residual stress calculation has been explicitly in-
cluded in the finite element model. The analytical
formulation presented here is a modified shear-lag
analysis with results similar to those derived by
Kerans and Parthasarathy [29] and Li and Grubb
[30]. The axial residual stress, which affects the fric-
tion force acting on the interface, is included explicitly
in the analysis.

2. Analytical modelling of fibre puli-out

The geometry of the fibre pull-out test is shown sche-
matically in Fig. 1. The specimen is a circular cylinder
with radius R,, and thickness t. A circular fibre with
radius R; is pulled out from the matrix with a uniform
normal traction o, = p applied at its end. To obtain
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Figure | Schematic drawing of the fibre pull-out test. The bound-
ary r = R,, is clamped. The circular fibre with radius R; is pulled-out
from the matrix with a uniform normal stress o, = p. The rest of the
boundary is traction free.

an approximate analytical solution of this problem,
we assume that r — oo and R, — co. In other words,
the matrix occupies the lower half space z < 0. The
problem is axisymmetric about the fibre axis which is
in the z direction. The fibre-matrix interface is located
atr = Ry and z < 0. Traction-free boundary condition
is imposed on the surface r > R¢ and z = 0. Both the
matrix and fibre are assumed to be linearly elastic and
isotropic with Young’s modulus and Poisson’s ratio
(Ems Vi) and (E¢, v¢), respectively.

2.1. Thermal stress problem
Residual stresses in the pull-out specimen are gener-
ated due to the difference in the thermal coefficient of
expansion of the matrix and the fibre denoted by oy,
and o, respectively. In the analytical model, this stress
state is estimated using the residual stresses ¢; and 13},
induced by cooling an infinitely long fibre embedded
in an infinite matrix by AT, where AT is the difference
between the temperature of the stress-free state and
the test temperature. The superscripts in #; and
tl; denote the thermal stresses in the matrix and the
fibre, respectively. Note that the residual stresses
tl; estimated using this solution are approximate, as
they do not satisfy the traction-free boundary condi-
tion on the surface z = 0.

The non-trivial fibre-stress components of #; are
found to be [31]

fo =ty = EE(0tm — o) AT (1a)
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P E(1 4 vp)
t, =ty [1 + HEm(l m Vf)] (1b)
where
‘= E(1 +vp) (1¢)

Ei(1 4 v) + En(1 4 ve)(1 — 2v)

Equation 1 is expected to approximate the actual
stress distribution in the fibre and the traction, tf, on
the fibre-matrix interface with the exception of a small
region near the traction-free surfaces z = 0. The valid-
ity of this approximation will be examined by our
finite element calculation in Section 3.

2.2. Analysis of pull-out

Following Meda et al. [32], we assumed that slip
along the fibre maftrix interface is governed by
Coulomb friction. At any given instant in the loading
history, either sticking, slipping or opening can occur
at a point along the interface. Conditions for these
three states are as follows:

(i) stick condition

dg dh
Or <0, |Ok;| < p|oRl, E~—E—h~0
(1i) slip condition
Or < 07 JGRZ, = HIO—R,;
dg dh
sgn <a> = sgn(og,), h = i 0

(iii) open condition
op=0p, =0 h>0

where

g = lim [uz(Rf + & Z) - uz(Rf — & Z)]
e—0*

h = lirrol+ [ur(R¢ + &, z) — ug(R; — ¢, 2)]
where p is the friction coeflicient.

The residual thermal stresses, due to the cooling of
the specimen from the stress-free temperature to the
test temperature, are given by Equation 1. This as-
sumption implies that the fibre end at z = 0 is com-
pressed by a residual stress of p =tL before any
external foad is applied.

The following assumptions are made in the analyt-
ical solution.

(A) The fibre is modelled as a rod, i.e. the fibre stress
is independent of r so that

f
%§$=:0 (2a)
oot
=0 (2b)

(B) The effects of the shear stress og, on the dis-
placement in the radial direction, ug, is neglected in
both the fiber and matrix, as in [32].



(C) We neglect the effects of the shear stress ok, on
us, so that ! is independent of r, which is consistent
with the rod assumption A.

For an axisymmetric problem with residual stresses,
the stress—strain relations of the fibre in cylindrical
coordinates are

duk Aok — viAc — v Ach

MR 3
or E¢ (3a)

ou, Aol — viAck — v;Avj
aZ Ef

(3b)

where the notation Act; = of, —tf; has been used.
Note that the deformation is measured with respect to
a specimen at the test temperature loaded at the end
by a compressive stress p = .. This is because the
residual stresses are obtained assuming that the fibre
is infinite in the z direction. Equilibrium in the radial
direction, ie.

aGR ORr — Oy aGRZ
— =0 4
or ¥ dz )
and assumption A implies that
9 f
oh= ok +r Oz (5)
0z

Substituting Equation 5 into Equation 3a results in
— v))Ack —~ ViAch
u{{:[(l v))Ack — v¢ ch ©
Eq

where we have ignored the term 0cg,/0z in Equation
3a according to assumption B. The displacement on
the matrix side is derived following Meda et al. [32] by
assuming that the matrix is an infinite slab deforming
under plane strain condition, with a hole of radius R;
subjected to an internal pressure Aoy

1 AR
u{{‘:~( + V) GRRf

£ at r = R, (7)

Note that assumption B is used in the derivation of
Equation 7. Imposing radial displacement and trac-
tion continuity at the interface, i.e.

(U = u (8a)
at r = Ry
Ack = Ac® (8b)
Equations 6 and 7 imply that

A f
Aot = % (9a)

where

VfEm

k=
(1 + Vm)Ef + (1 - Vf)Em

(Ob)

Equation 9a gives the relationship between the normal
stress acting on the fibre-matrix interface and the
tensile stress on the fibre.

A slip zone is developed as load is applied to the
fibre end at z = 0. Inside the slip zone, the Coulomb

friction law, for o} < 0, is
Or: = — HG{{ (]‘O)
The equilibrium of a fibre element in the slip zone is

0ol
aZ N Rf

20-Rz

(11)

Inserting Equations 9a and 10 in Equation 11 yields
a first-order differential equation

dAGt

C2p £
5 R; (tr + kAoy) (12)

This equation is integrated with the boundary condi-
tion 6t = p at z = 0, leading to

d & 2k
sot= =+ (p-t+ Bow () 09

where p is the applied tension on the fiber end and is
related to the pull-out force F by

F =nR?p (14)

Equation 13 gives the axial fibre stress for a point
inside the slip zone. The length of the slip zone, Lg, is
defined by the condition that no slip can occur beyond
zZ = Ls.

Following Shetty [5] and Kerans and Par-
thasarathy [29], we require that

Act =0 atz=Lg (15)

Equation 15 states that the axial fibre stress just out-
side the slip zone is the residual axial stress. The error
induced by this boundary condition is small, as long
as the slip zone is large compared with the fibre radius.
Lg 1s calculated using Equations 13 and 15 and is
found to be

Lg =20 f (16)
ST ouk T\ — k& + kp

The axial displacement ! = ui(z, p) is obtained by
integrating Equation 3b subjected to the condition
that ul(z = Lg, p) = 0. The integration is carried out
by inserting Equations 5, 9a and 13 into Equation 3b
and neglecting the shear stress term 0cf,/0z according
to assumption C. This procedure allows us to deter-
mine the axial displacement of the fibre at z =0

; 1 — 2vek o R ik
0.5 =~ [(p D3t LS:I (17
Note that uL(0, p) is non-zero when the applied stress
p vanishes because the fibre is initially compressed on
its free surface by the residual stress £ due to the
infinite fibre approximation.

The displacement uf in our model is calculated with
respect to the specimen in the residual stress state
which is obtained using the infinite fibre approxima-
tion, the consequence of this approximation is that the
fibre is initially compressed on its free surface by the
residual stress r2. On the other hand, the actual experi-
mental displacement U, at z =0 is measured with
respect to a residual stress state which obeys the trac-
tion-free boundary condition on the surface z = 0.
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A good approximation of Uy is obtained by subtract-
ing the displacement u5(0,0) computed using Equa-
tion 17. In other words, we subtract the displacement
ut(0, 0), due to the release of the excess residual stress
near the fibre end, i.e.

Ut = (0, p) — u3(0, 0) (18)

Using Equation 17, U; is found to be

1—2vwk({ R, &
U= ———|p—t +-—AL 19
f i <l7 ik T Abs (19a)
where
R th — kit
ALY = Lg(p) — Lg(0) = ——In | —— 2
S s(p) s(0) 2k n(t{;-—ktg—i—kp
(19b)
Introducing the dimensionless variables
_k
|tr
kE
a="y, (20b)
PR;
tf
P =1—k— (20c)
Ir
where |t&] = — 1k for a residual compressive stress,

we obtain

a:w[1 +1_1n<1 —ﬂﬂ 1)
2 p Per

The slip length, in terms of the normalized variables, is
found to be

L= 5 ha(p = 7 )
Note that the normalized displacement, i, given by
Equation 21 is a non-linear function of the normalized
load, p, and is independent of . This means that the
measured displacement, U, is inversely proportional
to W
The interfacial shear stress, og,, inside the slip zone
can be obtained from Equations 11 and 13; it is found
to be

2ukz
R¢

GRz:ultlf{l(pcr_ﬁ)eXp< ) 0<Z<LS

(23a)

It is convenient to introduce a normalised interfacial
shear stress, T

TRz

23b
NIk (23b)

T =
The axial fibre stress, 6, within the slip zone can be
expressed in terms of a normalized fibre stress, &, as
o. = |tr| (5/k) (23¢)

where
6 = (per — 1) (23d)
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Equation 21 implies that when the normalized
tension, p, reaches the “critical” value, p. (ie.
Per = ty — (tk/k)), the axial displacement becomes un-
bounded; this corresponds to the situation when the
applied load is such that the radial stress due to
Poisson’s contraction exactly cancels the radial nor-
mal residual stress [29]. In other words, there is no
frictional resistance to the external load. This corres-
ponds to the propagation of a mode I crack and our
analysis is no longer valid: a similar transition of the
crack propagation from mode II to mode I has been
found [27] and the existence of a critical load has also
been observed [26]. Note that the applied tension, p, is
normalized with respect to |th|/k, which is the stress
needed to cancel the radial normal stress when no
axial residual stress is present. Finally, we note that
the normalized critical load p., = 1 for the case when
the axial residual stress is set to zero.

3. FEM analysis
The finite element analysis of the pull-out test is
carried out using the code ABAQUS, developed by
Hibbitt, Karlsson and Sorensen Inc. The geometry is
shown in Fig. 1. The height, ¢, of the cylinder ranges
between 10 and 100 fibre radii, R;. The matrix radius,
R, is chosen to be 60R; to simulate the effect of an
infinite matrix. The domain of interest is modelled by
means of 500 biquadratic axisymmetric elements
(8 nodes) and 20 interface elements (3 nodes).

Coulomb friction is used in the interface elements: if
the normal stress acting on the two sides of the ele-
ment is tensile, the two sides separate so that there is
no normal and shear stress transfer between fibre and
matrix. When the normal stress is compressive, the
displacement across the interface is continuous up to
the shear limit (the friction coefficient times the nor-
mal stress) with slip occurring between the interfaces
at higher values.

The FEM analysis is carried out in two steps. In
step one the detailed thermal stress distribution in the
specimen due to a given temperature change is cal-

* culated. In the second step, the fibre is pulled out by

the applied traction load. The fibre and the matrix in
this step are subjected to the residual stresses obtained
in step L.

Slip at the matrix—fibre interface is allowed in both
the initial thermal loading stage as weil as in the
applied traction loading stage.

The boundary conditions are as follows: in the re-
sidual stress calculation the axial displacement of the
fibre and matrix nodes on the middle cross-section
z = t/2 of the specimen are fixed because of symmetry;
the rest of the specimen boundary is traction free. In
the pull-out calculation, the matrix nodes on the
boundary, r = R, are fixed to simulate a clamped
condition for the matrix. The matrix and fibre nodes
at the bottom of the specimen, z = ¢, are left traction
free. The matrix nodes on z =0 are traction free,
whereas a uniform displacement, Uy, is applied to the
fibre nodes.

To assess the accuracy of our FEM calculations, we
applied our FEM model to analyse the fibre push-out
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Figure 2 Comparison of (@) our FEM results for the case of the
fibre push-out test with (—) the numerical results of Hoysan and
Steif [24] for the case of E¢/E,, = 3.54, 1 = 0.3, vy = v, = 0.3. As in
[24], the residual radial stress at the interface is modelled by the
application of a constant pressure on the fibre and matrix interface
elements.

test, which was carried out by Meda et al. [32]. This is
done by reversing the loading on the fibre. Because
Meda et al. [32], simulated the effect of thermal stress
by the application of a constant pressure so that the
axial residual stress is ignored, we did not carry out
the initial thermal loading calculation but instead
modelled the residual radial stress at the interface by
the application of a constant pressure on the fibre and
matrix interface elements. The axial residual stress is
set equal to zero. The normalized displacement versus
normalized load curve for the case of Ei/E, = 3.54,
w=03, v, = v, =03 is shown in Fig. 2 where the
curve matches very well with the FEM analysis of
Meda et al. [32]. The normalization used in this figure
is identical to that reported elsewhere [32], and not
that of Equation 20.

4. Numerical results

4.1. Thermal stress simulation

FEM thermal stress calculations were carried out to
obtain the dependence of the residual stress distribu-
tion on the dimensionless parameters t/R;, E../E;
and p. To assess the accuracy of Equation 1, we
normalized the calculated thermal stresses by the ap-
proximate thermal stress solution given by Equation 1

Or =—F (24a)

(24b)

Or; = f (24C)

where t and ¢, are given in Equation 1. Perfect agree-
ment of the finite element results with the infinite fibre

approximation given by Equation 1 would imply that
6g = 6, =1 and &5, =0.

In Figs 3-5 the normalized thermal stresses defined
in the equations above are plotted as a function of the
normalized axial position z/t. These calculations are
carried out using different values of t/R;, E./E; and p.
The fixed parameters in these simulations are given by

Er=23x10" Pa (25a)
Ve = vy = 0.3 (25b)
AdAT =8 x107* (25¢)

As expected, the results of Figs 3-5 indicate that the
infinite fibre approximation given by Equation 1
breaks down near the fibre ends, where slip of the
fibre-matrix interface occurs due to thermal residual
stresses. The size of these “thermal slip zones” and
hence the accuracy of the infinite fibre assumption,
depends on the parameters t/R;, E,/E; and n. Our
simulation shows that the accuracy of the infinite fibre
approximation improves as the parameters ¢/R;,
E./E; and p increase. Physically, this is easy to see,
because a higher p (as well as a higher radial stress)
can allow the same amount of shear force to be trans-
mitted across a smaller “thermal slip zone”. We found
that, for small friction coefficients (u ~ 0.1), a large
thickness ratio t/R; > 100 is needed to ensure the
validity of the approximation of Equation 1.

4.2. Pull-out test simulation

Unless specified otherwise, simulations of the pull-out
test were obtained using t/R; = 100 to ensure the
validity of the infinite fibre approximation for small
friction coefficients. Also, all the finite element simula-
tions in this section were carried out using the fixed set
of parameters given by Equation 25a—c. Typically,
simulations are performed to study the dependence of
the pull-out test on the parameters E,/E;, y, and the
normalized displacement, .

The normalized displacement versus normalized
load curve for the case of E,/E; = 0.1 and p = 0.5 is
shown in Fig. 6. The curve, consisting of filled dots, is
obtained using our FEM model. The curve consisting
of open dots is obtained using the simplified FEM
model where the effect of residual stress is replaced
by a constant pressure applied on the interface. The
solid line is obtained using Equation 21 with tk and
£ given by Equation 1. The dashed line is obtained
using Equation 21 with & given by Equation 1 and
t£ = 0, which is the analytical solution for the case
where the axial residual stress is neglected. This cor-
responds to the case of a constant pressure applied to
the interface.

Fig. 6 shows that the normalized displacement is
not zero at zero normalized load. Indeed, the analyti-
cal model, Equation 21, predicts that

1 —2vk 1
aoza(ﬁ=0)=i—~”<1 —f> 26)

2 Per
where we have used L’Hopital’s rule to evaluate
the limit as p—0 in Equation 21. Physically, the
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1.2

non-zero normalized displacement at zero applied
load is caused by frictional slip induced by the axial
thermal residual stress. Thus, the slope du/dp of the
actual load-displacement curve is non-zero at zero
load. On the other hand, Equation 26 predicts that
il = 0 when the axial residual stress in the fibre is
neglected because p,, = 1 in this case.

The results in Fig. 6 show that the analytical model
agrees very well with the FEM. They also confirm the
necessity of including the residual axial stress in the
analysis, as pointed out elsewhere [29]. The curves
given by the analytical model approach the noz-
malized critical load p., (or p., = t5 — (tx/k)), when the
displacement becomes unbounded and the fibre slips
with no friction. Note that the normalized critical load
Per = 1, for the case when the axial residual stress is set
to zero (———~ in Fig. 6). In the FEM analysis, the slip
zone eventually reaches the other end of the fibre (ie.
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Figure 3 Comparison of (a) the thermal residual interface normal
stress, (b) axial stress and (c) interface shear stress, which are ob-
tained using FEM with those obtained using the infinite fibre
approximation. This comparison is accomplished by using the nor-
malized variables &y = oy/th, &, = G,/tl, B, = &g./th. Perfect
agreement of the finite element results with the infinite fibre approx-
imation would imply that &5 = &, = 1 and &y, == 0. These simula-
tions were carried out using three different values of t/R; = (@) 100,
(0 60 and () 10 with E,/E; = 0.1, u = 0.5.

Lg =t). The friction force on the interface does not
vanish when Lg =t and the asymptotic value of the
applied load is found to be slightly less than that
predicted by p.;. This is not surprising because the
analytical model is derived assuming that ¢ = oo,
whereas in the finite element model, a finite thickness
is used. Our model gives p., = & — (tk/k), which is in
good agreement with the results of the finite element
analysis. It should be noted that Kerans and
Parthasarathy [29] give p., in terms of a misfit strain.
If we assume their misfit is due entirely to thermal
stresses, then it can be expressed in terms of the resid-
val stresses and is identical to our expression here.
Also, one can show that, in the formulation of Li and
Grubb [30], p., 1s identical to our expression if we set
their debond length l; = oo in their Equation 38 and if
their misfit strain is expressed in terms of residual
stresses.

The effect of the residual axial stress on the critical
load is shown in Figs 7 and 8 for three different values
of v and E,/E;. These curves are obtained using the
analytical model (Equation 21). The normalized
critical load (i.e. the asymptotic value of the nor-
malized load) is always 20%—-30% lower than the
unit value predicted by Equation 21 if the axial resid-
ual stress is set to be identically zero. Thus, the as-
sumption of no axial residual stress overestimates
the normalized critical load. It should be noted that,
when the residual stress distribution differs signifi-
cantly from the infinite fibre approximation (e.g. for
t/R; = 10), the finite element results given in Fig. 3
show that the axial residual stress is usually



o 0.6
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
(a) z/t

1.2 ! : : T

much smaller than that predicted by Equation 1. We
have also carried out finite element calculation for the
case of t/R; =10 with E_/E; =1 and p=0.1. Our
simulation shows that the thermal slip zone exceeds
the thickness ¢. In this casé, the analytical solution
deviates significantly from the finite element result.

Figs 7 and 8 show the influence of v¢ and E,,/E; on
the pull-out test. The curves in these figures are gener-
ated using the analytical model Equation 21. The
critical load decreases as the Poisson’s ratio of the
fibre and E,,/E; increase. The results of the analytical
model for 0.1 < E_/E; <1 are insensitive to vari-
ations of the matrix Poisson’s coefficient, v,,, and
therefore are not shown here.

Next, we investigate the dependence of the pull-out
test on the modulus ratio, E,/E;, and the friction
coefficient, p. Fig. 9 shows the results of the finite
element analysis for E,,/E; = 0.3 and p = 0.1 and 0.25.

1.3

]
0'9 ' B ' . . H

> 1 f
L I

0.1

s
o

0.1 Pt
-0.3 |—

-0.7

: i i z I

_ 1 '3 i : ' N
0.0 0.2 0.4 0.6 0.8

(c) z/t

.0 1.2

Figure 4 Comparison of (a) the thermal residual interface normal
stress, (b) axial stress and (c) interface shear stress, obtained using
FEM with those obtained using the infinite fibre approximation.
This comparison is accomplished by using the normalized variables
S = Og/th, 5, = 6,/t,, Gr, = Gp./t.. Perfect agreement of the finite
element results with the infinite fibre approximation would imply
that 63 = 6, = 1 and &g, = 0. The simulations were carried out
using three different values of friction coefficients p = (<) 0.1,(0) 0.5
and (O) 3.0 with E,/E; = 0.1, t/R; = 60.

Results of the analytical model are shown in solid line.
The results of the finite element analysis for the case of
E./E:=10 with p=0.1 and 025 are shown in
Fig. 10. As in Fig. 9, the analytical solutions are also
shown in solid line. Equation 21 implies that plots of
normalized load versus normalized displacement
should be independent of the friction coefficient, 1, this
is confirmed by our FEM simulations in Figs 9 and 10.
The agreement between the predictions of the analyti-
cal model and the finite element results is very good:
within 5%-7% for u = 0.25 and within 2%-3% for
u=0.1.

The finite element results and the analytical solu-
tion for the interfacial shear (Equation 23a) inside the
slip zone is shown in Fig. 11 for u = 0.1 and 0.5. The
results for the axial fibre stress inside the slip zone for
w=0.1 and 0.5 are given in Fig. 12. These results are
obtained using the same applied tension. They indi-
cate that the agreement between the finite element and
the approximate shear-lag analysis improves as the
friction coefficient is reduced. One may expect that the
agreement between the finite element and the approx-
imate shear-lag analysis will depend only on the
length of the slip zone. To check this hypothesis, we
reduce the loading for the case of u = 0.1 so that the
slip zone are of the same size as that of p = 0.5. The
interfacial shear stress and the axial fibre stress ob-
tained using this procedure are also shown in Figs 11
and 12. (The analytical solutions are given by the
dotted lines and the finite element results by squares).
Our results indicate that the lower the friction coeffic-
ient, the closer is the agreement between the finite
element and the approximate shear-lag analysis even if
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(b) z/t

the slip zones are of the same size. It should be noted
that the agreement between the approximate shear-lag
analysis and the finite element results for the load
versus displacement curve is much less sensitive to the
friction coefficient, as pointed out above.

5. Discussion and conclusion

Our finite element simulation shows that there is ex-
cellent agreement between our approximated analyt-
ical solution, which is based on a shear-lag analysis.
For example, the displacement versus load relation
given by Equation 21, as well as the critical load for
complete fibre pull-out, compares very well with the
finite element results. The analytical model is accurate
for p in the range 0.5 = p > 0.1, although it could be
accurate for a larger set of p. The dependence of the
pull-out force on the elastic modulus of the matrix and
fibre is also well approximated by the analytical
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Figure 5 Comparison of (a) the thermal residual interface normal
stress, (b} axial stress and (c) interface shear stress, obtained using
FEM with those obtained using the infinite fibre approximation.
This comparison is accomplished by using the normalized variables
Og = Or/th, 5. = 0./tL, Gr, = Ow./t.. Perfect agreement of the finite
element results with the infinite fibre approximation would imply
that &g = &, = 1 and Gy, = 0. The simulations were carried out
using three different values of modulus ratio E,/E; = (O} 0.5, (L)
0.1 and (<) 0.05 with #/R; = 60 and u = 0.5.
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Figure 6 The normalized displacement @ = (ukE;/pR;) U; versus
normalized load p = (k/|tk]) p curve for the case of E,/E; = 0.1,
n = 0.5 (@) curve obtained using our FEM model; (O) curve ob-
tained using the simplified FEM model where the effect of residual
stress is replaced by a constant pressure applied on the interface. (—)
curve obtained using the analytical solution, Equation 21, with
t& and £ given by Equation 1. (-—-) curve obtained using Equation
21 with t& given by Equation 1 and t£ = 0, which is the analytical
solution. This corresponds to the case of a constant pressure applied
to the interface for the case where the axial residual stress is
neglected. '

model. The interfacial shear stress and the fibre stress
is also accurately predicted by the shear-lag model
provided that p is small. Thus the shear lag model
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Figure 7 The dependence of the normalized displacement
i = (UkE;/pR;) U; versus normalized load p = (k/|tk]) p curve on the
Poisson’s ratio of the fibre: (---) 0.2, (—) 0.3, (——-) 0.4.

Figure 8 The

normalized displacement
i = (ukEy/pR;) Us vérsus normalized load j = (k/|tk|) p curve on the
modulus ratio E,,/E;: (---) 0.001, (—) 0.1, (—--) 1.0.

dependence of the

captures accurately all the relevant features of the
pull-out test provided that the following conditions
are satisfied.

1. The accuracy of the analytical solution depends
on the ratio t/R;. The thermal residual stresses are
accurately predicted by the infinite fibre approxi-
mation for friction coefficient p > 0.1 as long as
t/R; = 100. When t/R; is sufficiently small so that
the thermal slip zone occupies a significant portion of
the fibre-matrix interface, the agreement between the
finite element simulation and the analytical solution is
Very poor.

2. The effect of residual axial stress should be in-
cluded in models of fibre pull-out. Our finite element
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Figure 9 Comparison of the normalized displacement versus nor-
malized load curve obtained by finite element results with those
obtained by the analytical model (Equation 21) for two different
w with E./E; = 03. (@) n = 0.1, (O) p = 0.25.

Figure 10 Comparison of the normalized displacement versus nor-
malized load curve obtained by finite element results with those
obtained by the analytical model (Equation 21} for two different
wwith E/E; = 1. (@) p =01, {O) n =0.25.

result shows that the interface can slip before load
application. This leads to non-zero fibre displacement
at zero load. Furthermore, the critical load for com-
plete pull-out of the fibre is overestimated by about
30% if the axial residual stress is neglected in the
modelling.

3. The fibre stress and the interfacial stress inside
the slip zone 1s accurately predicted by the shear-lag
model. As expected, the smaller the friction coefficient,
the better is the shear-lag approximation. The dis-
placement versus load relation is much less sensitive to
the {riction coefficient. Our finite element results show
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Figure 11 The normalized interface shear stress T = og,/p|tk| in-
side the slip zone for two different friction coefficients p = 0.1 and
0.5 with E,/E¢=1. The finite element results for: (@) p = 0.1,
p =063, (C) p=05, p=063, and (W) p =0.1, p = 0.20. Predic-
tions of the analytical model: (—) p = 0.1, 5 =0.63, (——-) p = 0.5,
p =063, and (-} p=0.1, p=0.20; (p) indicates the normalized
load used in the simulation.

1.0 ; 3 T T

z/t

Figure 12 The normalized axial fibre stress & = (p,, — ) inside the
slip zone for two different friction coefficients p = 0.1 and 0.5 with
E./E; = 1. The finite element resuits: (@) p=10.1, p = 0.63, (O)
w=05 p=063, and (W) p=0.1, p=0.20. Predictions of the
analytical model: (—) u = 0.1, = 0.63, (———) p = 0.5, p = 0.63, and
() u = 0.1, p = 0.20. (p) The normalized load used in the simula-
tion.

that the fibre displacement is inversely proportional to
the friction coefficient.

Although the procedure of our analytical solution
differs somewhat from that of Kerans and Par-
thasarathy [29] and Li and Grubb [30], many of their
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expressions are practically identical to ours provided
that their misfit strain is expressed in terms of the
thermal residual stresses. We note that Li and Grubb
[30] did not give a displacement versus load relation,
as they were mainly interested in measuring the inter-
facial stress using Raman spectrometry. Thus, the ana-
lytical analysis of these authors (and perhaps others) is
also an accurate description of the pull-out test.

In this work the fibre—matrix interface was
modelled by Coulomb friction. We have not con-
sidered interface models that described debonding ac-
companied by frictional slip. Approximate analytical
solution of the pull-out test using these interface mod-
els can be found elsewhere [26, 27].
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